Sources of Water Pollution and their Effects on Environment

Dr. S.K. Jogdand P.G. Dept. of Botany Mrs. K.S.K. College Beed

National Environmental Engineering Research Institute
Nehru Marg, Nagpur 20

Sources of Water Pollution

- The Main Sources of General Pollution affecting Water for Human Consumption are:
 - 1. Wastewater of animal origin (Manure heaps, cattle sheds or human origin
 - 2. Industrial Process waters or liquid effluents
 - 3. Run off Water
 - 4. Accidental Contamination
- Water Quality Considerations for Human Consumption
 - 1. Free from disease causing organisms
 - 2. A aesthetically acceptable, clear, odourless, palatable
 - 3. Free from toxic dissolved metals
 - 4. Does not contain inorganic and organic constituents in such concentrations as to cause health hazards when consumed over a longer period of time or life time

Point and Non-point Sources of Pollution

- Point source pollution involves wastes flushed into city's sewers or discharged directly by an industry and is measurable accurately
- Non-point source pollution occurs due to runoff from different areas
 - Causes extensive pollution of surface and groundwater sources
 - Affects drinking water, fishing, recreational streams and lakes
 - Accurate measurement is a complex problem due to extreme difficulty in determining specific contribution of each source at any one location
- Potential sources of non-point pollution include :

Fertilizers : Herbicides

Insecticides : Animal wastes

Dustfall ppth : Bacteria in Soil

> Does not contain inorganic and organic constituents in such concentrations as to cause health hazards when consumed over a longer period of time or life time

Water Quality Management

What is Water Quality ?

- Related to its potability for drinking purposes especially for Bacteriological point of view
- Related to its uses for beneficial purposes, i.e. Domestic, irrigation and industrial

What is Quality Criteria?

- Health (Human health related factors)
- Aesthetic
- Organoliptic etc.

Damage Caused by Water Pollution

- Health
- Cost Investment
- Destruction of Natural Resources
- Navigational interfaces
- Corrosion etc.

Quantity and Quality of Waste Resources

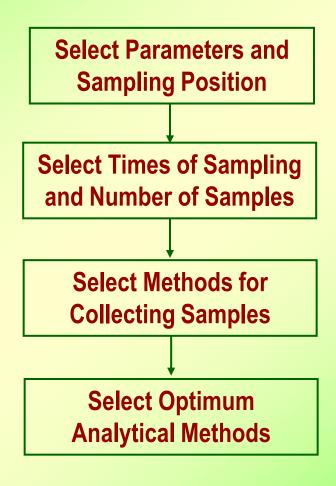
- Availability of Water is highly uneven in both space and time
 - Precipitation of water confined to only 3-4 months in a year
 - Varies from 10 CM in western parts of Rajasthan to over 1000 cm in Meghalaya
 - Total precipitation in India is estimated to be 400 million hectare meters, but

- Surface water availability : 178 MHM

- Groundwater availability : 42 MHM

- Substantial increase in the demand for water resource envisaged in near future in sectors :
 - Drinking
 - Irrigation
 - Industrial purposes
- > Transportation of these pollutants into surface and groundwater through natural forces viz. wind and precipitation
- In India, 100,000 tonnes of pesticides and fertilizers are being used annually causing extensive pollutions of water and land
- Thus, pesticide residues at levels higher than permissible limits in surface and groundwater supplies posing problems of taste, odour and hazards to human health
- In India, an alarming rise in levels of nitrates and phosphates in drinking waters of several states is observed:
 - Due to excessive use of chemical fertilizers viz. Ammonium, calcium, potassium and sodium, nitrates and phosphates
 - Urea also gets quickly converted to nitrates through microbial activities, contributing to excessive nitrates in drinking water

Hence to Avoid the Damage to Public Health/Property/ Uncontrolled Exploitation of Natural Resources (Water) Management of Water Quality is Essential


How to Manage Water Quality?

- > By Monitoring baseline (back ground) or intrinsic water quality
- Identification of point and non-point sources of pollution
- > Pollution abatement through investigating measures (Using Environmental Pollution Laws)
- Post-Mitigation Monitoring for continuous vigilance of water quality
- Control of soil erosion from the river banks
- Control of seawater/saline water intrusion into water bodies
- Control of acidic/alkaline waste due to mining activities
- Control of leachates from mining residues, solid refuse or chemical slag/sludges etc.
- > Evaluating performance of ETP/STP before their effluents join the receiving water bodies
- Discharge pattern in Surface Water (Rivers/Sea)

Water Quality Monitoring

- Analysis
- Interpretation of results, preparation of report

Factors Involved in Design of Sampling Positions

Indicators of Water Pollution

- Hydrological or Meteorological Parameters
- Physical Parameters
- Chemical Parameters

Inorganic Organic

- Nutrient Parameters
- Biological Parameters
- Bacteriological Parameters

Criteria for the Selection of Water Quality Parameters

- Basic Parameters : Determine the general quality of waters
- > Optional Parameters : Selected according to the location and water

use for particular purpose

> Globally Significant Parameters: Selected as per the facilities available in the

laboratory

Selection of Parameters

Physical Parameters

- Colour
- Turbidity
- Total Solids
- Conductivity
- pH

Chemical Parameters

Inorganic

- a. Alkalinity
- b. Chlorides
- c. Sulfates
- d. Hardness
- e. Silicates
- f. Fluoride
- g. Sodium
- h. Potassium
- i. Iron
- j. Management
- k. Heavy metals

Organic

- a. Dissolved Oxygen
- b. Chemical Oxygen Demand
- c. Bio-chemical Oxygen Demand
- d. Oil and Grease
- e. Phenols
- f. Hydrocarbons

Nutrient Parameters

Phosphates, Organic Nitrogen, Nitrate-Nitrogen and Nitrite-Nitrogen

Biological Parameters : a. Phytoplankton

b. Zooplankton

c. Water fowl

d. fish Kill

Bacteriological : a. Total count

b. Strepto coccai

c. Coliform

There is another method suggested by EPA under environmental monitoring system:

> Basic Parameters : Determines the general quality of water parameters are

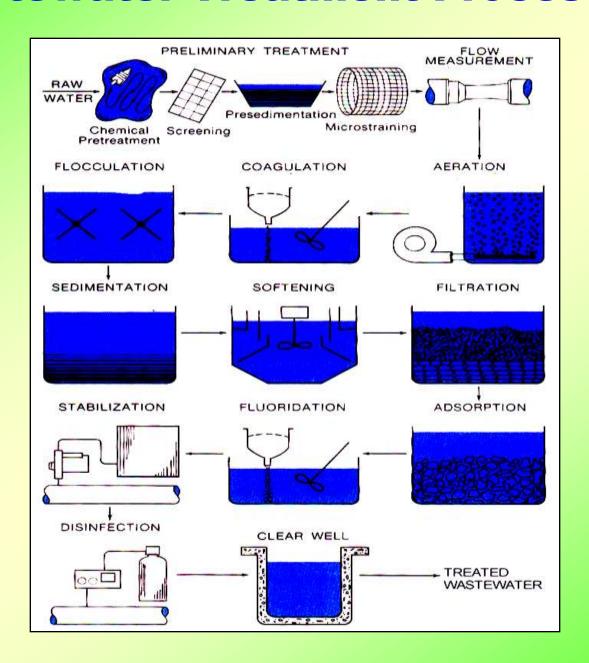
Temperature, pH, EC, DO, CI, Alkalinity, Suspended solids, Nitrogen-NH₃, NO₃ and NO₂, BOD, Fluoride and

Phosphate

> Optional Parameters : Selected according to the location and water use for

particular purpose, TOC, COD, Cr(IV), Total Cr, Ni, Zn, Cu, As, B, Si, Fe, K, Na, Phosphates, Organic nitrogen, Se,

H₂S, Ba, Ca & Mg


➢ Globally Significant Parameters : Selected according to the site and the facilities available

in the lab: Heavy metal, Cd, Hg, Pb, Organochlorine

Compounds like DDT, Aldrin, Dialdrin

Hexachlorocyclohexane etc.

Wastewater Treatment Processes

Wastewater Treatment Processes

Process	Purpose
Preliminary Treatment	
Screening	Removes large debris that can foul or damage plant equipment
Chemical Pretreatment	Conditions the water for the eventual removal of algae and other aquatic nuisances that cause taste, odour and colour
Presedimentation	Removes gravel. Sand, slit and other gritty material that can foul or damage plant equipment
Microstraining	Removes algae, aquatic plants, and small debris that can clog or foul other process
Flow Measurements	Measures the amount of water being treated
Main Plant Processes	
Aeration	Removes odour and dissolved gases , adds oxygen to improve taste
Coagulation/ Floculation	Converts nonsettleable particles to settleable particles
Sedimentation	Removes settleable particles
Softening	Removes hardness causing materials from water
Filtration	Removes finely divided particles, suspended flocs, and most microorganisms
Adsorption	Removes Organics and colour
Stabilization	Prevents scaling and corrosion
Fluoridation	Adds Fluoride in order to harden tooth enamel
Disinfection	Kills disease-causing organisms

Control of Pollution or to Improve the Quality of Water

If natural quality of water is unsatisfactory like high fluoride, high nitrate and excess iron Then - special treatment be followed (Coagulation, reverse osmosis, flotation

High turbidity

conventional treatment

Bacterial Contamination - Chlorination

- If pollution due to domestic sewage and/or Industrial effluents or outfalls
 - Then Segregate the waste channels, construct STP/ETP following chemical/biological methods. Treat the waste to the desired level of effluent quality before discharge to the receiving water bodies (for wastewater disposal follow the ISI/CPCB/State Pollution Control Board standards depending on the disposal site
- If pollution is due to improper disposal of solid waste nearby the waste body Then – segregate the waste (Solid/Hazardous) and dispose off at the sites properly lined or by any other suitable methods to avoid leachates
- The best alternative is to reduce the pollution at site by modifying the process, changing the raw material or entirely adopting the cleaner technology if available
- Pollution control is not a one strock job to instrall treatment plants etc. but-need to monitor STP/ETP, various outfalls and overall quality of water even for the nutrient load like nitrogen and phosphorus which helps for entrophication

Backlog in Water Pollution Control

- Ties recently, water quality management practices in India have adhered to strict regulatory measures viz. water Act 1974
- Only 50% of large/medium scale Industries have provided complete/partial emission/effluent control systems stipulated by CPCB/SPCBS
- Small scale industries have not yet been subjected to rigorous pollution control measures
- Only few cities have municipal wastewater treatment facilities
- Efforts have been directed only towards control of pollution from point sources while non-point sources pollution has been overlooked
- No comprehensive document on sources of pollution available
- Over 400 water quality monitoring stations operating under GEMS and MINAS have not been provided appropriate inputs to river action plans
- Hence, there is a need to develop site-specific effluent standards fully exploiting assimilative capacity of the water-bodies with respect to designated use

Thank-You