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KARL GAUSS (1777-1855)

T HE GERMAN mathematician,
physicist, and astronomer Karl
Gauss had a brilliant and prolific career,
despite numerous personal tragedies.
He contributed to many disciplines,
undertaking a study of the Earth’s
magnetic hield, and developing new
methods for calculating the orbits of
celestial bodies. His most profound
influence was felt in mathematics, in
Lields as diverse as number theory and
geometry. By developing the idea of
complex numbers, he established the
fundamental theorem of algebra, Gauss




DerFInrTION 4-1. Let # be a fixed positive integer. Two integers a
and b are said to be congruent modulo n, symbolized by

a=b(mod n)

if # divides the difference @ — b; that is, provided that g — b = A#
for some integer £.

To fix the idea, consider n = 7. It is routine to check that
3=24(mod7), —31=11(mod7), —15= 64 (mod 7),

since 3—24=(—3)7, —31—11=(—06)7, and —15— (—064)=7T-.7.

It # ¥ (a—b), then we say that a is incongruent to b modulo » and in this

case we write ¢ = b (mod r;rj. For example: 253£ 12 (mod 7), since 7
fails to divide 25 — 12 =13,



Given an integer 4, let g and r be its quotient and remainder upon
division by #, 5o that

a=qn+1, 0<r<n,

Then, by definition of congruence, =7 (mod #). Since thete ate #
choices for r, we see that every integer is congruent modulo 1 to exactly

one of the values 0, 1,2, ..., n—"
only if #|a. The set of # integers
Jast positive residhes modlo .

, in particulat, =0 (mod 1) if and

), 1,2, ..., 115 called the set of



In general, a collection of # integers 4,, 4,, ..., 4, is said to
torm a complete set of residues (ot a complete system of residues) modulo n if

every integet is congruent modulo # to one and only one of the 4, ; to
put it another way, #,, #y, ..., 4, ate congruent modulo # t0 0, 1,2, ...,
# — 1, taken in some otder. For instance,

12, —4 11,13, 22, 82, 91
constitute 2 complete set of tesidues modulo 7; here, we have
~12=2, —4=3 11 =4 13=06,2=1,82=5, 91=0,

all modulo 7. An observation of some importance is that any # integers
form a complete set of residues modulo # if and only if no two of the
Integers are congruent modulo . We shall need this fact later on.



THEOREM 4-1. For arbitrary integers a and b, a=b (mod ) if and
only if a and b leave the same nonnegative remainder when divided by .

Proof First, take a == b(mod n), so that a— b + kn for some integer
£ Upon division by , b leaves a certain remainder : b= gn +1,
where 0 <7< 5 Therefore,

a=b+hn=(gntr)+hn=(g+hn+r,

which indicates that # has the same temainder as b,



On the other hand, suppose we can write a=¢, 7 +r and
b= g,n -+ r, with the same remainder r (0 <r <<#). Then

a—b=(qn+1)—(Ga? +7)=(g1— g2

whence #|a—b. In the language of congruences, this says that
a=h (mod #),

lllustration:
Since the integers —56 and —11 can be expressed in the form
— 56 = (—T}g +71, —11= {-—E)'E} L7

with the same remainder 7, Theorem 4-1 tells us that —56= —11
(mod 9). Going in the other direction, the congruence —31 =11
(mod 7) implies that —31 and 11 have the same remainder when
divided by 7; this is clear from the relations

—3 =(—57+4, 11=1-744.



THEOREM 4-2. ILet n =0 be fixed and a, b, ¢, d be arbitrary integers.
Then the following properties hold:

(1) a=a(mod »).

(2) If a = b (mod #), then b = a (mod #).

(3) If a= & (mod #) and b = ¢ (mod #), then a = ¢ (mod #).

(4) If a=b(mod #) and c = d (mod #»), then a  c=b - d (mod #)
and a¢ = bd (mod #).

(5) Ifa=b(mod #), then a +c=b + ¢ (mod #) and ac = be (mod #).

(6) If a=p (mod n), then a* = b* (mod #) for any positive integer k.

Proof: For any integer a2, we have a —a=0.#, so that g=a
(mod #). Now if ga= & (mod #), then 2 — b = A» for some integer
k. Hence, b — a = —(An) = (— A} and, since — £ is an integer, this
yields (2).

Property (3) is slightly less obwviocus: Suppose that a=5
{mod #) and &= (mod #). Then there exist integers # and £ satis-
fying @ — b = hnand b — ¢ = An. It follows that

a—c=(a—b)+(b—c)=hn+ An=(h + H)n,

in consequence of which # = ¢ (mod #).




In the same vein, if a=5 (mod #) and ¢r=4 (mod #), then
we are assured that a — b= £, » and ¢ — d= £, for some choice of
k,and £,. Adding these equations, one gets

o+ )=+ =)+~
— kyn A kgn = (hy 4 ko

of, s a congruence statement, ¢ +-¢ =4 4 d(mod #). As regards the
second assertion of (4), note that

e =(b+ kyn)d+ kyn)=bd + (bky -+ dky 4 K,y

Since bk, + dky + A, kyn is an integer, this says that s — bd Is divis-
ible by #, whence a¢ = bd (mod »).



!!ﬂ pmal J property (!) § ccwtre! by (4) and the tact that

¢=¢(mod ). Finally, we obtain (6) by making an induction argu-
ment. The statement cettainly holds for £ = 1, and we will assume
it 15 true for some fixed £ From (4), we know that = b (mod )

and ¢* =" (mod ) together imply that as* = b8* (mod ), or equiv-
tlently, ¢***=*** (mod #). This 1 the form the statement should
ke for £+ 1, 0 the induction step is complete




Example 4-2
Let us endeavor to show that 41 divides 220 1, We begin by

noting that 2% = —9 (mod 41), whence (2°)*==(—9)* (mod 41) by
Theorem 4-2(6); in other words, 2% =81 . 81 (mod 41). But 81=
1 (mod 41) and so 81 . 81 =1 (mod 41), Using parts (2) and (5)
of Theotem 4-2, we finally artive at

29 —1=81-81—1=1-1=0(mod 41).
Thus 41| 22— 1, as desired.
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Example 4-3
For another example in the same spirit, suppose that we are asked to
find the remainder obtained upon dividing the sum

121430441400 4991 41001

by 12. Without the aid of congruences this would be an awesome
calculation. The observation that starts us off is that 4!=24=0
(mod 12); thus, for £ >4,
kl=41.5.6--- k=0-5.6---£=0(mod 12).
One finds in this way that
10421+ 31 =41 ... 100!
N =114+21 4+ 31404+ 4+0=9(mod 12).

Accordingly, the sum in question leaves a remainder of 9 when
divided by 1Z.
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